montevive
MCP Server
montevive
public

penpot mcp

Penpot MCP server

Repository Info

72
Stars
5
Forks
72
Watchers
4
Issues
Python
Language
-
License

About This Server

Penpot MCP server

Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.

Documentation

# Penpot MCP Server šŸŽØšŸ¤–

<p align="center">
  <img src="images/penpot-mcp.png" alt="Penpot MCP Logo" width="400"/>
</p>

<p align="center">
  <strong>AI-Powered Design Workflow Automation</strong><br>
  Connect Claude AI and other LLMs to Penpot designs via Model Context Protocol
</p>

<p align="center">
  <a href="https://github.com/montevive/penpot-mcp/blob/main/LICENSE">
    <img src="https://img.shields.io/badge/License-MIT-blue.svg" alt="License: MIT">
  </a>
  <a href="https://www.python.org/downloads/">
    <img src="https://img.shields.io/badge/python-3.12%2B-blue" alt="Python Version">
  </a>
  <a href="https://pypi.org/project/penpot-mcp/">
    <img src="https://img.shields.io/pypi/v/penpot-mcp" alt="PyPI version">
  </a>
  <a href="https://github.com/montevive/penpot-mcp/actions">
    <img src="https://img.shields.io/github/workflow/status/montevive/penpot-mcp/CI" alt="Build Status">
  </a>
</p>

---

## šŸš€ What is Penpot MCP?

**Penpot MCP** is a revolutionary Model Context Protocol (MCP) server that bridges the gap between AI language models and [Penpot](https://penpot.app/), the open-source design and prototyping platform. This integration enables AI assistants like Claude (in both Claude Desktop and Cursor IDE) to understand, analyze, and interact with your design files programmatically.

### šŸŽÆ Key Benefits

- **šŸ¤– AI-Native Design Analysis**: Let Claude AI analyze your UI/UX designs, provide feedback, and suggest improvements
- **⚔ Automated Design Workflows**: Streamline repetitive design tasks with AI-powered automation
- **šŸ” Intelligent Design Search**: Find design components and patterns across your projects using natural language
- **šŸ“Š Design System Management**: Automatically document and maintain design systems with AI assistance
- **šŸŽØ Cross-Platform Integration**: Works with any MCP-compatible AI assistant (Claude Desktop, Cursor IDE, etc.)

## šŸŽ„ Demo Video

Check out our demo video to see Penpot MCP in action:

[![Penpot MCP Demo](https://img.youtube.com/vi/vOMEh-ONN1k/0.jpg)](https://www.youtube.com/watch?v=vOMEh-ONN1k)

## ✨ Features

### šŸ”Œ Core Capabilities
- **MCP Protocol Implementation**: Full compliance with Model Context Protocol standards
- **Real-time Design Access**: Direct integration with Penpot's API for live design data
- **Component Analysis**: AI-powered analysis of design components and layouts
- **Export Automation**: Programmatic export of design assets in multiple formats
- **Design Validation**: Automated design system compliance checking

### šŸ› ļø Developer Tools
- **Command-line Utilities**: Powerful CLI tools for design file analysis and validation
- **Python SDK**: Comprehensive Python library for custom integrations
- **REST API**: HTTP endpoints for web application integration
- **Extensible Architecture**: Plugin system for custom AI workflows

### šŸŽØ AI Integration Features
- **Claude Desktop & Cursor Integration**: Native support for Claude AI assistant in both Claude Desktop and Cursor IDE
- **Design Context Sharing**: Provide design context to AI models for better responses
- **Visual Component Recognition**: AI can "see" and understand design components
- **Natural Language Queries**: Ask questions about your designs in plain English
- **IDE Integration**: Seamless integration with modern development environments

## šŸ’” Use Cases

### For Designers
- **Design Review Automation**: Get instant AI feedback on accessibility, usability, and design principles
- **Component Documentation**: Automatically generate documentation for design systems
- **Design Consistency Checks**: Ensure brand guidelines compliance across projects
- **Asset Organization**: AI-powered tagging and categorization of design components

### For Developers
- **Design-to-Code Workflows**: Bridge the gap between design and development with AI assistance
- **API Integration**: Programmatic access to design data for custom tools and workflows
- **Automated Testing**: Generate visual regression tests from design specifications
- **Design System Sync**: Keep design tokens and code components in sync

### For Product Teams
- **Design Analytics**: Track design system adoption and component usage
- **Collaboration Enhancement**: AI-powered design reviews and feedback collection
- **Workflow Optimization**: Automate repetitive design operations and approvals
- **Cross-tool Integration**: Connect Penpot with other tools in your design workflow

## šŸš€ Quick Start

### Prerequisites

- **Python 3.12+** (Latest Python recommended for optimal performance)
- **Penpot Account** ([Sign up free](https://penpot.app/))
- **Claude Desktop or Cursor IDE** (Optional, for AI integration)

## Installation

### Prerequisites

- Python 3.12+
- Penpot account credentials

### Installation

#### Option 1: Install from PyPI

```bash
pip install penpot-mcp
```

#### Option 2: Using uv (recommended for modern Python development)

```bash
# Install directly with uvx (when published to PyPI)
uvx penpot-mcp

# For local development, use uvx with local path
uvx --from . penpot-mcp

# Or install in a project with uv
uv add penpot-mcp
```

#### Option 3: Install from source

```bash
# Clone the repository
git clone https://github.com/montevive/penpot-mcp.git
cd penpot-mcp

# Using uv (recommended)
uv sync
uv run penpot-mcp

# Or using traditional pip
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate
pip install -e .
```

### Configuration

Create a `.env` file based on `env.example` with your Penpot credentials:

```
PENPOT_API_URL=https://design.penpot.app/api
PENPOT_USERNAME=your_penpot_username
PENPOT_PASSWORD=your_penpot_password
PORT=5000
DEBUG=true
```

> **āš ļø CloudFlare Protection Notice**: The Penpot cloud site (penpot.app) uses CloudFlare protection that may occasionally block API requests. If you encounter authentication errors or blocked requests:
> 1. Open your web browser and navigate to [https://design.penpot.app](https://design.penpot.app)
> 2. Log in to your Penpot account
> 3. Complete any CloudFlare human verification challenges if prompted
> 4. Once verified, the API requests should work normally for a period of time

## Usage

### Running the MCP Server

```bash
# Using uvx (when published to PyPI)
uvx penpot-mcp

# Using uvx for local development
uvx --from . penpot-mcp

# Using uv in a project (recommended for local development)
uv run penpot-mcp

# Using the entry point (if installed)
penpot-mcp

# Or using the module directly
python -m penpot_mcp.server.mcp_server
```

### Debugging the MCP Server

To debug the MCP server, you can:

1. Enable debug mode in your `.env` file by setting `DEBUG=true`
2. Use the Penpot API CLI for testing API operations:

```bash
# Test API connection with debug output
python -m penpot_mcp.api.penpot_api --debug list-projects

# Get details for a specific project
python -m penpot_mcp.api.penpot_api --debug get-project --id YOUR_PROJECT_ID

# List files in a project
python -m penpot_mcp.api.penpot_api --debug list-files --project-id YOUR_PROJECT_ID

# Get file details
python -m penpot_mcp.api.penpot_api --debug get-file --file-id YOUR_FILE_ID
```

### Command-line Tools

The package includes utility command-line tools:

```bash
# Generate a tree visualization of a Penpot file
penpot-tree path/to/penpot_file.json

# Validate a Penpot file against the schema
penpot-validate path/to/penpot_file.json
```

### MCP Monitoring & Testing

#### MCP CLI Monitor

```bash
# Start your MCP server in one terminal
python -m penpot_mcp.server.mcp_server

# In another terminal, use mcp-cli to monitor and interact with your server
python -m mcp.cli monitor python -m penpot_mcp.server.mcp_server

# Or connect to an already running server on a specific port
python -m mcp.cli monitor --port 5000
```

#### MCP Inspector

```bash
# Start your MCP server in one terminal
python -m penpot_mcp.server.mcp_server

# In another terminal, run the MCP Inspector (requires Node.js)
npx @modelcontextprotocol/inspector
```

### Using the Client

```bash
# Run the example client
penpot-client
```

## MCP Resources & Tools

### Resources
- `server://info` - Server status and information
- `penpot://schema` - Penpot API schema as JSON
- `penpot://tree-schema` - Penpot object tree schema as JSON
- `rendered-component://{component_id}` - Rendered component images
- `penpot://cached-files` - List of cached Penpot files

### Tools
- `list_projects` - List all Penpot projects
- `get_project_files` - Get files for a specific project
- `get_file` - Retrieve a Penpot file by its ID and cache it
- `export_object` - Export a Penpot object as an image
- `get_object_tree` - Get the object tree structure for a Penpot object
- `search_object` - Search for objects within a Penpot file by name

## AI Integration

The Penpot MCP server can be integrated with AI assistants using the Model Context Protocol. It supports both Claude Desktop and Cursor IDE for seamless design workflow automation.

### Claude Desktop Integration

For detailed Claude Desktop setup instructions, see [CLAUDE_INTEGRATION.md](CLAUDE_INTEGRATION.md).

Add the following configuration to your Claude Desktop config file (`~/Library/Application Support/Claude/claude_desktop_config.json` on macOS or `%APPDATA%\Claude\claude_desktop_config.json` on Windows):

```json
{
  "mcpServers": {
    "penpot": {
      "command": "uvx",
      "args": ["penpot-mcp"],
      "env": {
        "PENPOT_API_URL": "https://design.penpot.app/api",
        "PENPOT_USERNAME": "your_penpot_username",
        "PENPOT_PASSWORD": "your_penpot_password"
      }
    }
  }
}
```

### Cursor IDE Integration

Cursor IDE supports MCP servers through its AI integration features. To configure Penpot MCP with Cursor:

1. **Install the MCP server** (if not already installed):
   ```bash
   pip install penpot-mcp
   ```

2. **Configure Cursor settings** by adding the MCP server to your Cursor configuration. Open Cursor settings and add:

   ```json
   {
     "mcpServers": {
       "penpot": {
         "command": "uvx",
         "args": ["penpot-mcp"],
         "env": {
           "PENPOT_API_URL": "https://design.penpot.app/api",
           "PENPOT_USERNAME": "your_penpot_username",
           "PENPOT_PASSWORD": "your_penpot_password"
         }
       }
     }
   }
   ```

3. **Alternative: Use environment variables** by creating a `.env` file in your project root:
   ```bash
   PENPOT_API_URL=https://design.penpot.app/api
   PENPOT_USERNAME=your_penpot_username
   PENPOT_PASSWORD=your_penpot_password
   ```

4. **Start the MCP server** in your project:
   ```bash
   # In your project directory
   penpot-mcp
   ```

5. **Use in Cursor**: Once configured, you can interact with your Penpot designs directly in Cursor by asking questions like:
   - "Show me all projects in my Penpot account"
   - "Analyze the design components in project X"
   - "Export the main button component as an image"
   - "What design patterns are used in this file?"

### Key Integration Features

Both Claude Desktop and Cursor integration provide:
- **Direct access** to Penpot projects and files
- **Visual component analysis** with AI-powered insights
- **Design export capabilities** for assets and components
- **Natural language queries** about your design files
- **Real-time design feedback** and suggestions
- **Design system documentation** generation

## Package Structure

```
penpot_mcp/
ā”œā”€ā”€ api/              # Penpot API client
ā”œā”€ā”€ server/           # MCP server implementation
│   ā”œā”€ā”€ mcp_server.py # Main MCP server
│   └── client.py     # Client implementation
ā”œā”€ā”€ tools/            # Utility tools
│   ā”œā”€ā”€ cli/          # Command-line interfaces
│   └── penpot_tree.py # Penpot object tree visualization
ā”œā”€ā”€ resources/        # Resource files and schemas
└── utils/            # Helper utilities
```

## Development

### Testing

The project uses pytest for testing:

```bash
# Using uv (recommended)
uv sync --extra dev
uv run pytest

# Run with coverage
uv run pytest --cov=penpot_mcp tests/

# Using traditional pip
pip install -e ".[dev]"
pytest
pytest --cov=penpot_mcp tests/
```

### Linting

```bash
# Using uv (recommended)
uv sync --extra dev

# Set up pre-commit hooks
uv run pre-commit install

# Run linting
uv run python lint.py

# Auto-fix linting issues
uv run python lint.py --autofix

# Using traditional pip
pip install -r requirements-dev.txt
pre-commit install
./lint.py
./lint.py --autofix
```

## Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

1. Fork the repository
2. Create your feature branch (`git checkout -b feature/amazing-feature`)
3. Commit your changes (`git commit -m 'Add some amazing feature'`)
4. Push to the branch (`git push origin feature/amazing-feature`)
5. Open a Pull Request

Please make sure your code follows the project's coding standards and includes appropriate tests.

## License

This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.

## Acknowledgments

- [Penpot](https://penpot.app/) - The open-source design and prototyping platform
- [Model Context Protocol](https://modelcontextprotocol.io) - The standardized protocol for AI model context

Quick Start

1

Clone the repository

git clone https://github.com/montevive/penpot-mcp
2

Install dependencies

cd penpot-mcp
npm install
3

Follow the documentation

Check the repository's README.md file for specific installation and usage instructions.

Repository Details

Ownermontevive
Repopenpot-mcp
Language
Python
License-
Last fetched8/8/2025

Recommended MCP Servers

šŸ’¬

Discord MCP

Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.

integrationsdiscordchat
šŸ”—

Knit MCP

Connect AI agents to 200+ SaaS applications and automate workflows.

integrationsautomationsaas
šŸ•·ļø

Apify MCP Server

Deploy and interact with Apify actors for web scraping and data extraction.

apifycrawlerdata
🌐

BrowserStack MCP

BrowserStack MCP Server for automated testing across multiple browsers.

testingqabrowsers
⚔

Zapier MCP

A Zapier server that provides automation capabilities for various apps.

zapierautomation