
MCP Server
kareemullah123456789
public
gemini mcp
基于 Docker 的 Python 应用,实现 Gemini API 的模型上下文协议。
Repository Info
0
Stars
0
Forks
0
Watchers
0
Issues
Python
Language
-
License
About This Server
基于 Docker 的 Python 应用,实现 Gemini API 的模型上下文协议。
Model Context Protocol (MCP) - This server can be integrated with AI applications to provide additional context and capabilities, enabling enhanced AI interactions and functionality.
Documentation
Here's a comprehensive `README.md` template for your Gemini MCP Docker project, formatted for GitHub: ```markdown # Gemini MCP Docker Application A Dockerized Python application implementing Model Context Protocol (MCP) with Google's Gemini API.   ## 📦 Features - Dynamic context management via `.context` files - Dockerized environment for dependency isolation - Interactive CLI interface - Supports Gemini 1.5 Flash and Pro models ## 🚀 Quick Start ### Prerequisites - Docker Engine 20.10+ - Google Gemini API key ([Get one here](https://aistudio.google.com/app/apikey)) ### Installation ```bash git clone https://github.com/yourusername/gemini-mcp.git cd gemini-mcp ``` ### Configuration 1. Create `.env` file: ```bash cp .env.example .env ``` 2. Edit `.env` with your API key: ```env GEMINI_API_KEY=your_key_here ``` ### Build & Run ```bash docker build -t gemini-mcp . docker run -it --env-file .env gemini-mcp ``` ## 🛠️ Project Structure ``` . ├── contexts/ # Context definition files │ ├── technical.context # Technical support context │ └── creative.context # Creative writing context ├── app.py # Main application ├── Dockerfile # Docker configuration ├── requirements.txt # Python dependencies └── .env.example # Environment template ``` ## 💡 Usage Examples ### Technical Mode ``` Choose context: technical Your prompt: How do I debug a Python segmentation fault? ``` ### Creative Mode ``` Choose context: creative Your prompt: Write a haiku about containerization ``` ## 🧩 Adding New Contexts 1. Create new `.context` files in `contexts/` folder: ```bash echo "[SYSTEM CONTEXT: MEDICAL]" > contexts/medical.context echo "You are a medical AI assistant..." >> contexts/medical.context ``` 2. The system will auto-detect new contexts on startup ## 🔧 Troubleshooting ### Common Issues | Error | Solution | |-------|----------| | `Context not found` | Verify filename matches exactly | | `API key invalid` | Regenerate key in Google AI Studio | | `Docker build fails` | Check `requirements.txt` exists | ### Debugging ```bash # Inspect container filesystem docker run -it --entrypoint /bin/sh gemini-mcp ls -la contexts/ ``` ## 📜 License MIT License - See [LICENSE](LICENSE) for details ## 🤝 Contributing 1. Fork the project 2. Create your feature branch (`git checkout -b feature/AmazingFeature`) 3. Commit changes (`git commit -m 'Add amazing feature'`) 4. Push to branch (`git push origin feature/AmazingFeature`) 5. Open a Pull Request ``` Key features of this README: 1. **Badges** for quick visual scanning 2. **Structured sections** with clear headers 3. **Code blocks** with copy-paste friendly commands 4. **Troubleshooting table** for common issues 5. **Visual directory tree** for project navigation 6. **Contribution guidelines** for open-source readiness To implement: 1. Save this as `README.md` in your project root 2. Update placeholder values (your GitHub URL, etc.) 3. Commit to Git: ```bash git add README.md git commit -m "Add comprehensive documentation" git push origin main ``` For enhanced documentation, consider adding: - Screenshots of the CLI in action - API rate limit information - Docker Compose configuration examples - CI/CD pipeline integration details
Quick Start
1
Clone the repository
git clone https://github.com/kareemullah123456789/gemini-mcp2
Install dependencies
cd gemini-mcp
npm install3
Follow the documentation
Check the repository's README.md file for specific installation and usage instructions.
Repository Details
Ownerkareemullah123456789
Repogemini-mcp
Language
Python
License-
Last fetched8/8/2025
Recommended MCP Servers
💬
Discord MCP
Enable AI assistants to seamlessly interact with Discord servers, channels, and messages.
integrationsdiscordchat
🔗
Knit MCP
Connect AI agents to 200+ SaaS applications and automate workflows.
integrationsautomationsaas
🕷️
Apify MCP Server
Deploy and interact with Apify actors for web scraping and data extraction.
apifycrawlerdata
🌐
BrowserStack MCP
BrowserStack MCP Server for automated testing across multiple browsers.
testingqabrowsers
⚡
Zapier MCP
A Zapier server that provides automation capabilities for various apps.
zapierautomation